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Abstract-The effect of the presence of stable layering of a solute on the heat transfer across an enclosure 
with differentially heated side walls is studied. The method of investigation employed is the finite 
difference simulation of the governing conservation equations for laminar free convection. For stable 
convecting systems, the convecting layers are found to behave as individual, low aspect ratio enclosures, 
with a consequent decrease in lateral heat transfer. The fluid in layered systems which are kinematically 
unstable upon heating is observed to penetrate the diffusive interface adjacent to heated (or cooled) side 

walls, leading to rapid mixing of the layers. 

NOMENCLATURE 

DS, solute diffusivity; 
D T, thermal diffusivity; 

92 gravitational acceleration; 

h, layer height ; 
H, enclosure height; 

Lc, Lewis number; 

Nu, Nusselt number; 
NX, grid number in x direction; 
NY, grid number in y direction; 

Pr, fluid Prandtl number; 

Ra, thermal Rayleigh number; 

R,, stability number; 

S, solute concentration; 
T, fluid temperature; 

n, horizontal velocity; 
0, vertical velocity; 

X, horizontal coordinate; 

Y> vertical coordinate. 

Greek symbols 

a, coefficient of thermal expansion; 

P> coefficient of fractional expansion due to 
solute; 

AT, wall temperature difference; 

ASo, solute concentration difference between 
layers; 

v, kinematic viscosity; 

P3 fluid density; 

*a stream function; 

a, fluid vorticity. 

1. INTRODUCTION 

RECENTLY, considerable attention has been directed 
toward the study of flow and transport processes driven 
by multi-component diffusion effects. These effects 
result when two or more fluid components with dif- 
ferent diffusivities interact in a body force field. 
Examples of combinations which have been studied 
experimentally are heat-salt and salt-sugar systems 

with diffusivity ratios of approximately 100 and 3 
respectively. Turner [l] has summarized much of this 
previous work. When the component with smaller dif- 
fusivity is destabilizing, the “salt finger” instability is 
often observed. An example would be the interaction 
between cool, fresh water overlayed with hot, saline 
water. 

On the other hand, convective layering is often 
observed when the component with larger diffusivity 
is destabilizing. An example of this case would be the 
layer formation observed when a stably stratified saline 
solution, with continuous gradient, is heated from the 
side. Upon sufficiently strong lateral heating, well 
mixed convective layers, separated by diffusive inter- 
faces containing large vertical gradients of temperature 
and concentration, will form. The stability limits for 
incipient layer formation in both wide [2,3] and 
narrow [4-71 enclosures have been established. For 
both the narrow and wide gap cases adjacent, initially 
formed convective layers merge two into one on a time 
scale which is approximately h2/DT with h the layer 
height and DT the thermal diffusivity. Thus, a two- 
dimensional convective layer system evolves into a 
system of well mixed deep convecting layers separated 
by diffusive interfaces. 

In this work we are interested in investigating how 
the lateral heat transfer across an enclosure is effected 
by the presence of solute stratifications as found in a 
layered system. Furthermore, under what conditions 
will the interface separating convecting layers become 
unstable resulting in merging. The method used is the 
finite difference simulation of the governing conser- 
vation equations assuming two-dimensional flow sub- 
ject to the Boussinesq approximation. Because of layer 
merging the problem under study has no steady state 
solution and must be treated as an initial value prob- 
lem. We have carried our calculations through the 
initial transient, out to where the flow kinetic energy 
is slowly varying, indicating a quasi-steady condition. 

Previous numerical treatments dealt with layer for- 
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mation in an initially quiescent and linearly stratified 
fluid using explicit finite difference techniques [7,8]. 
It was difficult to assess the effect of the presence of 
convecting layers on the lateral heat transfer since the 
numerical solutions became unreliable once convection 
was established. In this work an implicit alternating 
direction technique of solution has been employed. 
Rather than deal with a continuously stratified solu- 
tion, we have fixed the number of convecting regions 
and the location of the diffusive interface separating 
them by considering an initially quiescent and iso- 
thermal fluid having a step change in solute concen- 
tration at enclosure midheight. 

in Section 2 we describe the governing equations, 
boundary conditions and solution algorithm employed. 
This is followed in Section 3 with a survey of results 
which we have obtained for the lateral heating of a 
sahne solution in a square enclosure. Finally, in Section 
4 we summarize our conclusions. 

2. ANALYSIS 

The geometry considered consists of a rectangular 
enclosure of height, H and width, iV with vertical side 
walls. The flow is assumed to be two-dimensional, in 
the x, y plane, having horizontal and vertical velocity 
components u, and u. Initially the fluid is isothermal 
at some mean temperature To with a step decrease in 
salinity of magnitude ASO at enclosure midheight. The 
two side walls are suddenly changed to To - (hT1’2) 
and To + (AT/2), while the top and bottom are adia- 
batic. All surfaces are impermeable to S and the no- 
slip condition on fluid velocity is applied. If the fluid 
has a linear state equation 

/, =Po(l-~(T--)+p(s-S,):. (1) 

Then subject to the Boussinesq approximation the con- 
servation equations may be written in dimensionless 
form as 

with 

All quantities have been non-dimensionahzed using 
the enclosure width, W, as the characteristic length and 
WZjDT as the characteristic time. The dimensionless 
temperature and ~on~ntration are given by 

T-G+?: _ _ 
” 2 _. 

T= AT 
S-SC) 

I s=-hso. (7) 

Equation (2) is a vorticity transport equation formed 
by combining the x and y momentum equations and 

application of equation (,I). Equatrons (3) and (4) are 
heat and solute transport equations and equation 15) 
is the relation between stream function and vorticity 
which results when the two-dimensional stream func- 
tion, $, is introduced to eliminate the in~ompre~sibi~it~ 
condition. R, = ~AS~/~A~ is a stability number which 
is a measure of the ratio of density changes due to the 
stabilizing effect of the solute stratification divided by 
the destabilizing effect of the wall temperature increase. 
R, < 1 results in a kinematical~y unstable density dis- 
tribution. Ra = g(ccAT.~vD~) W3 is the thermal Rayieigh 
number based on enclosure width and IV, I>(, arc the 
fluid Prandtl and Lewis numbers. Eyuationz iZ)- (51 
are the systems to be solved using finite differences. 

Boundary and initial conditions are’ 

Initial conditions: 

$(O, .?, V) = G(0, .?, ?) = 0 

‘i’(O, .?, _P, = 0.5 

Boundary conditions : 

Equations (2).-(4) were written III finite difference form, 
with all spatial derivatives second order accurate. in 
particular, the non-linear terms, J, of equations (2).-(4) 
were represented by centered differences. It is recog- 
nized that this discretized version of the Jacobian is 
non-conservative. However, it has been favorably com- 
pared to the Arakawa Jacobian representation. which 
is conservative to second order, for both viscous and 
nonviscous two dimensional, time dependent Rows with 
only negligible difference in the results obtained 1201. 
This coupled with the simplicity of this representation 
as compared to Arakawa’s form, dictated its use. 

The finite difference equations were solved using the 
implicit alternating direction technique. The specific de- 
tails of our algorithm are contained in [9]. In essence 
the IAD technique reduces the solution of equations 
(2)-(4) to the solution of NX + NY tridiagonal systems 
of algebraic equations for each time step. where NX 
and NY are the number of grid points in the x and .V 
directions respectively. We used the special form of 
Gauss-elimination for the solution of these tri-diagonal 
systems. In order to apply this to equations <2)-(4) we 
must apply the boundary conditions peculiar to each 
equation to the elements of the tri-diagonal system 
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which lie on the boundary. Application of the Dir&let 
condition, and the zero normal derivative conditions 
on T and S are straightforward, the latter by applying 
symmetry to finite difference equations written about a 
boundary point. The vorticity boundary condition 
creates some difficulty since the boundary vorticity 
must be determined through extrapolation by appli- 
cation of finite differences to equations (6). Ultimately 
the boundary vorticity may be written in terms of 
adjacent grid point stream function values. We have 
used both first and second order accurate formulas 
which give essentially the same results. 

The finite difference form of equation (5) had to be 
solved at each time step. Hackney’s [lo] Fourier 
Analysis and Cyclic Reduction scheme was used. 

3. RESULTS 

All calculations for stratified systems reported on 
here are for Le = 100 and Pr = 6.7 in order to simulate 
a the~oh~ine system. The region aspect ratio was 
held constant at B = 1. Ra was varied between 5 x lo4 
and 106; R, between 0 and 10. All calculations reported 
here are for a 17 x 17 grid, although we have per- 
formed a few 17 x 33 (NX x NY) runs in order to 
ascertain if our grid was fine enough; the finer calcu- 
lation led to essentially the same result as the 17 x 17 
calculation. We also investigated the effect of varying 
the time step size on the calculation; At was varied be- 
tween 4 x low5 to lo-‘. At higher R, and Ra the larger 
time step size resulted in an oscillation in S and ii;i in the 
y direction just above and below the diffusive interface. 
This is probably due to our use of centered differences 
for J, and could be minimized by decreasing At. 

As a check on our method we performed a few 
calculations for single component flows. The results 
are summarized in Table 1 where the average wall 
Nusselt number, ’ 

. ..fie=, 

Table 1. Overall Nusselt number 
in a square enclosure 

RLl Pr Rii 
- 
1.47 x lo4 0.73 2.81 

105 0.73 5.97 
2.86 x 10’ 6.98 1.51 

lo5 6.70 6.12 
1.4 x 105 6.98 7.85 

is calculated by numerical approximation to second 
order accuracy. Our results for air (Pr = 0.73) are in ex- 
cellent agreement with those of Wilkes and Churchill 
[ll] (for Ru/Pr > 2 x 104), DeVahl Davis [12] and 
Newell and Schmidt Cl31 while they are higher than 
those of McGregor and Emery [14] and Quon [lS]. 
Part of this variation in resuhs might be at~ibutable to 
a Prandtl number effect (both [14] and [IS] were for 
Pr = 1). It has been shown that the effect of Prandtl 
number variation should be negligible at Pr > 7 [15], 

FG 1. Stream function temperature and solute isocontour 
maps at Ra = 105, R, = 2 and l= 0.07. 

Our results for Pr N 6.8 appear to agree well with those 
of DeVahl Davis (Pr = lo), but are 15-20x higher 
than those of Quon (Pr = 7.14) and Cormack et al. 
[16], (Pr = 6.98). All of the results noted stem from 
numerical calculations similar to ours, but it must be 
conjectured here that the variations are caused by 
seemingly minor differences in the numerical methods 
used. For example, [13] and [16] used a graded mesh 
via a transformation of coordinates, [IS] used a 
staggered mesh with some grid points straddling the 
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boundaries and [t 1,12,14] and the present work used 
a uniform grid. References [15] and [l&J considered 
conservative schemes while the others did not. Other 
less obvious differences, including the method of speci- 
fication of boundary conditions, exist. 

Figure 1 are stream function, temperature, and 
salinity isocontour maps for Ra = 105, R, = 2, Pr = 6.7. 

and i = 0.7. Two convecting regions, separated by a 
dead region are evident. Consider the upper convecting 
region. The isotherms (Fig. 2b) tend to be bunched 
near the left (cooled) wall while they are spread out 

near the right (heated) wall. A symmetric behavior is 
exhibited in the thermal field for the lower region. 
Cormack et al. [16], in the study of convection in 
shallow cavities, found that the character of the flow 

changed as the region aspect ratio was decreased to 
values much less than unity, departing from a boundary 
layer structure, and approaching a “parallel flow” 
structure where the flow is driven by the lateral tem- 
perature gradient existing in the core. Evidently, the 
same effect is exhibited in Fig. 1. The upper convecting 
region aspect ratio is approximately 0.55 near the cool 
wall and 0.35 near the heated wall. Thus the tendency 
toward a boundary layer structure is observed near the 
cool wail while flow driven by a uniform lateral tem- 
perature gradient exists near the heated wall. 

s 

appearance. Perhaps this erect is better displayed 111 
Fig. 2. which plots vertical solute concentration pro 
files at three lateral locations for the conditions corrc- 
sponding to Fig. 1. 

Figure l(c) shows a salinity isocontour map. The 

tsohalines have been bunched together near the region 
midheight, indicating an interface region with large 
S-gradient. The interface is inclined at an angle to the 

horizontal, the angle increasing with increasing Rn and 

decreasing R, until overturning. Note the spires of 
constant salinity protruding into the convecting 
regions. A structure similar to this was observed with 

turbulent experiments reported in [17]. Either parcels 
of high salinity fluid are entrained along the diffusive 

interface, or a portion of the energetic flow from the 
boundary layer below penetrate the interface adjacent 
to the vertical walls. These are then convected across 
toward the cold wall where they settle, giving the “spire” 

We are interested in as~rtaiIling the effect which the 
vertical salt stratification has on the lateral heat trans- 
fer. Figure 3 shows the transient wall Nusselt number 
(equation 15) at Ru = lo’, Pr = 6.7 for 0 .S R;, c: 5. 

Initially all curves follow the pure conduction CLIITT. 

The homogeneous flow calculation departs from this 

at i N 0.006 and reaches a constant value of %u : 6.7. 

This transition is delayed with increasing H,. For 
R, > 1, the flow develops into the double convectron 

mode as shown in Fig. 1. The Nusselt number is quasi- 
steady here, with a slow increase which would pre- 
sumably continue as the salinity difference betwjeen the 
two regions is diminished through vertical diffusion 

across the interface. When the current value of It,, ~~ !. 
the interface would overturn. 

The flow field for R,, < I IS distinctly ditl’eren: ;if 
shown in Fig. 4 which are stream function, temper;!- 
ture and salinity maps for Rtr = IO’. R,, 0.” ,tl 

Nu 

1 I I I I I I I 
001 002 003 004 005 0.06 007 

Fio. 3. Transient wall Nusselt number for Ru = 10’ and 0 ,< R, < 10. 
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turning. This is a consequence of the no-slip and im- 

permeable wall boundary conditions [equations (12) 
and (14)]. The thickness of these regions is probably 

not accurate, being magnified by the finite size grid 

used. 
We have carried all calculations shown in Fig. 3 out 

to a time of f = 0.3. This corresponds to a dimen- 
sional time of 5.56h for a 1Ocm wide enclosure 

(Dr = 1.5 x 10m3 cm’js). For all R, < 1 the layers 
overturned at f < 0.07. For all R, > 1, the system 
remained stable, with the wall Nusselt number remain- 

ing near the lower values shown in Fig. 3. 
Part of the decrease in wall Nusselt number shown 

in Fig. 3 for R, > 1 occurs because a fraction of the 

vertical walls are covered by the interface region where 
lateral transport is predominately by conduction. An- 
other part stems from changes in the character of the 
flow in the convecting region due to the presence of 

the diffusive interface. Consider Fig. 5, which is a com- 
parison of the local Nusselt number along the heated 
wall for R, = 0 and R, = 2. For the stratified case the 

Y 

FIG. 4. Stream function, temperature, and solute isocontour 
maps at Ra = lo’, R, = 0.75 and i = 0.07. 

f = 0.07. In this case fluid near the vertical wall 
penetrates the diffusive interface and begins to mix 
with fluid in the other convecting region. At this point 
our numerical simulation probably loses its validity 
since the actual mixing would probably be turbulent. 
The turbulent mixing process would serve to accelerate 
the system’s return to the homogeneous fluid situation. 

bottom convecting region extends to j N 0.55. The 
local heat-transfer coefficient exhibits the same vari- 

ationin j as theR,= 0 case, but at reduced magnitude. 
If we calculate Nu over the interval 0 d j < 0.55, we 

obtain an average value of 3.2. This is compared to a 
value of 2.7 obtained from Fig. 12 of [16] for a 

differentially heat cavity with R = 0.55, Pr = 6.98 at 
the same Ra. The agreement obtained (the difference 
being 15%) is encouraging since our results for a square 
enclosure were also about H-20% in excess of theirs. 
The characteristics of the Nu vs j curve for the upper 
region, 0.55 < y < 1, are even more like those of a low- 
aspect ratio cell, resulting in an average Nu determined 

- 
to be 1.06. This decrease in Nu with decreasing aspect 
ratio for enclosures with i7 < 1 has also been observed 
by Boyack and Kearney [18] and Sernas et al. [19] 
where the working fluid was air. 

CONCLUSIONS 

Figure 4(c) shows that the isohalines adjacent to the The major effect of the layering of solute is to 
vertical walls at midheight have not moved from their decrease the heat transfer across the enclosure. At 
original location even though the layers are over- R, > 1 each layer acts more or less lie an individual 
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Nu, Y 
FIG. 5. Local wall Nusselt number at Ra = lo5 for 

R, = 0 and R, = 2. 



low aspect ratio cell. As the layer aspect ratio decreases, 
the flow field approaches the “core flow” configuration 
with its associated conduction temperature field as 

discussed in [16]. This appears to be the major reason 
9 

’ 
for the reduction in overall Nusselt number. An addi- 
tional reduction is obtained at wall locations adjacent 
to the diffusive interface separating convecting layers. to* 

At R, < I? the diffusive interface separating convect- 
ing regions is kinematically unstable. Vertically moving 

Il. 

fluid adjacent to the side walls penetrates the diffusive 
interface with consequent rapid mixing of the two 12. 

Iayers. 
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EFFET D’UNE DISPOSITION EN COUCHES DE SOLUTE SUR LE TRANSFERT 
THERMIQUE LATERAL DANS UNE ENCEINTE 

R&uum--On etudie I’etTet de la presence d‘une disposition en couches stables d’un solute. sur lc transfert 
thermique dans une enceinte ayant des parois di~~remment chauff&s. La methode de recherche employee 
est la simulation aux differences finies des equations de conservation pour la convection nature& 
laminaire. Pour des systemes stables, les couches convective+ se comportent comme des enceintes 
individuelles B faible rapport de forme, avec, par consequent une decroissance du transfer1 lat&al. Dam 
les systemes a couches cinematiquement instables, le fluide penetre I’interface de diffusion adjacent aux 

parois chauffees (ou refroidies), ce qui conduit it un melange rapide des couches. 

DER EINFLUSS EINER LOSUNGSSCHICHTIJNG AUF DEN WARMEUBERGANG 
QUER ZU DEN BEHALTERWANDUNGEN 

~us~mmenfa~uu~-Es wird der EinIIuB einer stabilen SchIchtung des gel&ten StofIes auf den Warme- 
iibergang in einem Behllter mit unterschiedlich beheizten Seitenwanden untersucht. Die den Vorgang 
beschreibenden Erhaltungsgleichungen fur laminare, freie Konvektion werden mit Hilfe eines DilTerenzen- 
verfahrens gel&t. Bei stabilen Systemen verhalten sich die Konvektionsschichten wie einzelne, niedrige 
Behalter mit entsprechender Abnahme des Warmetibergangs in Querrichtung. In geschichteten 
Systemen, welche bei Beheizung kinematisch instabil werden. wurde tin Ejndrjn~en des Fluids in die 
DiffusionsgrenzAache an den beheizten (oder gekiihlten) Seitenwlnden beobachtet, was zu ciner raschen 

Vermischung der Schichten ftihrte. 

BJ&i)IHHE IIPOCJIOEK PAGTBOPEHHOI-‘0 BEIBECTBA HA TETIJTOOBMEH 
YEPE3 EOKOBbIE CTEHKM ffOJlOC%I 

~0Tgwmt-- Hsyqaercrt mnirniwe cTa6HnbHbIX IIpOCJIOeK paCTBOpeiiHOr0 BeweCTBa Ha TenirOO6MeH 
BIIojX,CTHc &XW’WiHO HarpeTbIMa 6OKOBblMH CTeHKaMH.MCCnenOBaHHeIIpOBO;qUnOCb CrtOMOUbIO 

KOHeYHO-Oa3HOCTHOrO MeTom vememB ypaeHemii% CoxpaHeHun mm naMmrapno2t ecrecrseFmo21 
Ko~~~~~~. Ha#i,uem3, 9~0 B cTa6HnbHbIX Te~no~e~~am~ux cmTeMax nepenarorwe cnoM BenyT 

ce6a KaK ‘_%MOCTOOIITeIZbHMG BKJlKYfeHBX c ~a6~eHHblM Te~OO6MeHOM rep3 6OKOBbIe CTeliKR. 

~a~n~~nocb,n~oo~KOCTb~cnOKCTbrxCUC~Max,KklHeMaTN'IeCKIIHecTa6Anb~lX~plfHarpeBa~u, 

npownrraer gepes ~~414y3uo~~yro nosepxaocTb pasnena, rpaHEi'iaUlyEO c HarpeTbIMR (EinH XOnOA- 

HbIMR)60KOBblMH CTeHKaMN,U ITpHBOJiWT K 6blc~po~y IlepeMeWABaHHK, CJlOeB. 


